

Logic Synthesis for Reconfigurable Transistors

Akash Kumar Shubham Rai, Michael Raitza *Chair for Processor Design*

DRESDEN concept

DFG

WISSENSCHAFTSRAT

CFAED: Center for Advancing Electronics Dresden

2

What will we learn today?

3

- □ Where does the reconfigurability come from?
- Designing novel combinational gates
- □ How does it benefit us?
- □ Going beyond logic synthesis
- □ Where are we going from here?

Reconfigurable Transistors: Silicon Nanowires Based Reconfigurable FETs

SiNW Dual-gate RFETs: Combines p-type and n-type functionality

5

Dual-Gate RFETs based Inverter

Multi Input Gate RFETs: NAND

7

Reconfigurable Gate

Reconfigurability: Mathematical Representation

Other Combinational logic Gates

Case Study: Conditional Carry Adder

SINW RFETs vs CMOS

*Using logical effort theory

Extrinsic Reconfigurability

- Extrinsic Reconfigurability
 - Change some bits in the control path
 - Extra circuitry req. here

Intrinsic Reconfigurability

- Intrinsic reconfigurability
 - Unique electrical properties
 - from the material
 - No extra circuitry.

Design Flow

Area savings over CMOS – post logic synthesis

Design Flow: Adding place and route

Physical Synthesis Flow

SiNW XOR Layout Concept

Area increase over CMOS – post P&R

Other Ongoing Works – Property Checking

- 1. Exploring design space of new standard cells, exploiting reconfiguration
 - a. By using meta-models that represent a multitude of possible circuit topologies
 - b. Enumeration of all distinct Boolean formulae that can be implemented with a specific meta-model
- 2. Quantifying found cells using probabilistic transistor models
 - a. Approach is agnostic to a specific technology
 - b. New switching functions / characteristics can be easily added
 - c. (Probabilistic) delay and activity are possible targets

Other Ongoing Works – Property Checking

Other Ongoing Works – Property Checking

Other Ongoing Works – Security

Use the program gate to camouflage circuits

24

Only a particular key to activate the circuit
Length of the key can be used as a tunable knob

□ Other keys may to be used to de-activate (kill-switch) the chip

Camouflaging also makes it hard to reverse-engineer a circuit

Conclusions

- □ Important to re-visit logic synthesis for emerging technologies
- □ Exploit ambi-polarity of transistors to make smaller (faster?) circuits
- □ Need to consider post P&R results for a true evaluation
- Need better/realistic models of emerging devices

Chair for Processor Design

Questions and Answers

Email: akash.kumar@tu-dresden.de

